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Abstract. We investigate the phase diagram of the three-dimensional Hubbard model at half filling using
quantum Monte Carlo (QMC) simulations. The antiferromagnetic Néel temperature TN is determined from
the specific heat maximum in combination with finite-size scaling of the magnetic structure factor. Our
results interpolate smoothly between the asymptotic solutions for weak and strong coupling, respectively, in
contrast to previous QMC simulations. The location of the metal-insulator transition in the paramagnetic
phase above TN is determined using the electronic compressibility as criterion.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.Hf Non-Fermi-liquid ground states,
electron phase diagrams and phase transitions in model systems – 71.30.+h Metal-insulator transitions
and other electronic transitions

1 Introduction

The canonical lattice model for correlated electrons is the
Hubbard model [1–3] defined by the Hamiltonian

Ĥ = −t
∑

<ij>,σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑
i

n̂i↑n̂i↓ (1)

where ĉ†iσ (ĉiσ) are electron creation (annihilation) oper-
ators, 〈ij〉 denotes a pair of neighboring lattice sites and
t and U are the hopping matrix element and the onsite
Coulomb energy, respectively. At half filling the ground
state of the 3D Hubbard model on a simple cubic lat-
tice has antiferromagnetic long range order for all posi-
tive values of U due to the perfect nesting of the Fermi
surface. At finite temperatures the sublattice magnetiza-
tion is reduced by thermal fluctuations and a transition
to a paramagnetic phase occurs at the Néel temperature
TN. In the strong coupling limit the energy scale for mag-
netism is obtained by mapping the Hubbard model to
the antiferromagnetic spin 1/2 Heisenberg model with ex-
change coupling J = 4 t2/U . For small U antiferromag-
netism results from the Fermi surface instability and the
relevant energy scale is set by the BCS like expression
TN ∝ t exp(−1/(ρ0U)) where ρ0 is the density of states at
the band center.

There have been many attempts to calculate TN over
the whole range of U using both QMC simulations [4–6]
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and analytical approaches including variational meth-
ods [7], Hartree Fock theory [8], strong coupling expan-
sions [9], dynamical mean field theory (DMFT) [10–12],
the two-particle self-consistent formalism [13] and spin
fluctuation theory [14]. A critical comparison of the vari-
ous approaches can be found in references [9,13]. A com-
mon drawback of mean-field like approximations is that
in the strong coupling limit they fail to reproduce the
correct Heisenberg result TN = 3.83 t2/U [15] and in-
stead reduce to the Weiss molecular field theory with
Tmf

N = 6 t2/U . Strong coupling expansions, on the other
hand, break down in the Fermi surface instability regime.
As to numerical methods, the results of previous QMC
simulations [4,5] do not agree with each other and have
been questioned by Hasegawa [16] who argued that they
overestimate TN considerably. Nevertheless, for lack of al-
ternatives the QMC results of references [4,5] have served
as benchmarks for analytical approaches over the last ten
years despite the controversy concerning their reliability.
Clearly, there is need for improved QMC simulations of
the 3D Hubbard model with better statistics and for larger
systems than previously accessible.

Besides antiferromagnetism the second important phe-
nomenon described by the half-filled Hubbard model is
the interaction-induced metal-insulator transition, known
as Mott-Hubbard transition [17]. This transition occurs
when the ratio of the interaction strength U and the
bandwidth W exceeds some critical value of order one.
Unfortunately, the presence of antiferromagnetic order
makes it impossible to observe the Mott-Hubbard tran-
sition in the 3D Hubbard model at temperatures below
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TN. DMFT calculations for the fully frustrated Hubbard
model [18] where antiferromagnetism is completely sup-
pressed predict a first order metal-insulator transition line
that persists up to a critical point at (Uc, Tc) in the phase
diagram, followed by a crossover region above this critical
point. In this paper we examine if such a first order tran-
sition line can also be observed in the 3D Hubbard model
or if it is completely occluded by the antiferromagnetic
phase below TN.

2 Magnetic phase transition

We have studied the 3D Hubbard model on a simple cu-
bic lattice with periodic boundary conditions using a fi-
nite temperature, grand canonical QMC algorithm [19,20]
which is based on a discrete Hubbard-Stratonovich decou-
pling of the Hubbard interaction term. In this algorithm,
the inverse temperature or imaginary time β has to be
divided into a finite number of steps ∆τ which introduces
an error ∝ ∆τ2tU into the calculations. We have chosen
∆τ2tU = 0.1 after making sure that the results are not
significantly affected by the extrapolation ∆τ → 0. A typ-
ical simulation on a L×L×L lattice consisted of between
100 000 (L = 4) and 2 000 (L = 10) measurement sweeps
that were grouped into 20 blocks in order to estimate the
statistical error of the QMC data. QMC simulations fre-
quently suffer from the minus sign problem, i.e. the fact
that the fermionic determinant that serves as probabil-
ity weight function is not always positive, in particular at
low temperatures. At half filling where most of our sim-
ulations were performed this problem does not exist due
to particle-hole symmetry, but even in the calculations
of the compressibility that require simulations away from
half filling we never encountered any serious minus sign
problem since we worked at relatively high temperatures.

Our first goal is to determine the antiferromagnetic
Néel temperature as function of the interaction strength
U . To this end we have calculated the specific heat which
is the central quantity to characterize thermodynamical
properties of many-particle systems and is easily accessi-
ble both experimentally and from numerical simulations.
Since phase transitions are usually accompanied by a max-
imum or a divergence of the specific heat the transi-
tion temperature can be determined from specific heat
data without measuring the order parameter directly. Of
course, not every maximum of the specific heat is associ-
ated with a phase transition; one has to verify that the or-
der parameter indeed changes from zero to a nonzero value
at the presumed transition temperature. In the Hubbard
model for sufficiently large U there are two maxima of the
specific heat, one at low temperatures ∝ t2/U reflecting
spin excitations, the second on a higher energy scale ∝ U
associated with charge excitations. Here we concentrate
on the low temperature peak which we use to determine
the Néel temperature.

The specific heat can either be calculated via C =
∂E/∂T or from the energy fluctuations,C ∝ 〈Ĥ2〉 − 〈Ĥ〉2.
We employ the first method which turns out to be

numerically more accurate. The following procedure is
used: First the energy is calculated with QMC in a tem-
perature range where the phase transition is expected
to take place. The simulations are performed at fixed
imaginary time slice ∆τ for all temperatures. An extrap-
olation ∆ → 0 is not necessary since the finite ∆τ cor-
rections to the energy are nearly temperature indepen-
dent over the relatively small temperature range under
consideration and even taking into account corrections
to linear order in T does not affect the position of the
specific heat maximum. In order to calculate the spe-
cific heat from the energy data the temperature interval
is divided in a number of equidistant values. For each
of these temperatures Ti the value of the specific heat
Ci is determined such, that i) the resulting curve is as
smooth as possible and ii) the energies Efit obtained by
numerical integration of the specific heat values Ci are
as close as possible to the QMC data. In practice this is
achieved by minimizing the quantity λ1A + λ2B where
A =

∑
i(Ci+1 − 2Ci + Ci−1)2 controls the smoothness of

the fit while B =
∑

((Efit−EQMC)/σQMC)2 measures the
deviation between the fit and the QMC data. This proce-
dure avoids to chose a specific functional form for the fit
function which could bias the results in some way or the
other. The ratio of the parameters λ1 and λ2 is fixed such
that the energy values obtained by the minimization pro-
cedure lie within the statistical errors σQMC of the QMC
data. We have checked that the final results are very ro-
bust against moderate variations of the ratio λ1/λ2. In or-
der to estimate the error bars for the specific heat we have
performed an average over many different input energy
data sets obtained by adding random noise of the order
of σQMC to the mean values EQMC. Of course, any noise-
reducing algorithm tends to wash out sharp structures like
cusps or discontinuities. On the other hand, the specific
heat curves obtained from extensive QMC simulations of
the three-dimensional spin 1/2 Heisenberg model [21] are
as smooth as ours indicating that there exist no sharp
structures that could be lost by the procedure that we use
to calculate the specific heat, at least for the system sizes
that we consider. In any case, the location of the maxi-
mum which we are mainly interested in is only very little
affected.

Figure 1 shows the energy as function of temperature
for L = 4 and several values of U . Here and in the follow-
ing figures we have fixed the energy scale by setting t = 1.
The curves connecting the data are obtained with the fit-
ting procedure described above. They all have a point of
inflection indicating that the specific heat maxima are con-
tained in the respective temperature intervals. In Figure 2
the specific heat for U = 6 is displayed as function of tem-
perature for L = 4, 6, 8 and 10. The maximum value of C
increases somewhat with increasing system size while si-
multaneously the position of the maximum Tmax is slightly
shifted to lower temperatures. There is no indication of a
divergence for large systems. This is in agreement with the
assumption that the half-filled Hubbard model belongs to
the 3D Heisenberg universality class with a negative ex-
ponent α ≈ −0.11 which means that the specific heat
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Fig. 1. Energy as function of temperature for L = 4 and
U = 4, 6, 8, 10, 12 (from bottom to top). Error bars are much
smaller than the size of the symbols. The curves are obtained
with the procedure described in the text.
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Fig. 2. Specific heat as function of temperature for U = 6 and
L = 4, 6, 8, 10. The inset shows the position of the maximum
of the specific heat vs. 1/L.

has only a cusp but no divergence at the critical tem-
perature. High precision QMC simulations of the 3D spin
1/2 Heisenberg model [21] confirm this behavior. In the
Heisenberg model the shift of the maximum of C between
L = 4 and the infinite lattice is about five percent. In
the inset of Figure 2 the peak temperature Tmax is plot-
ted vs. 1/L indicating that in the Hubbard model finite-
size corrections are quite small as well. A linear fit yields
TN = 0.31± 0.01.

We now demonstrate that the peaks in the specific heat
are indeed associated with the antiferromagnetic phase
transition. To this end we have calculated the magnetic
structure factor

S(Q) =
1
L3

∑
i,j

ei Q (Ri−Rj) 〈(n̂i↑ − n̂i↓)(n̂j↑ − n̂j↓)〉 (2)

where Q = (π, π, π) is the antiferromagnetic wave vector.
S(Q) is related to the sublattice magnetization m via

S(Q)
L3

= m2 + f(L) (3)
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L
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Fig. 3. Finite size scaling of the magnetic structure factor for
U = 6 and T = 0.3, 0.36 and 0.4 (from top to bottom).

where f(L) → 0 for L → ∞. In order to extrapolate the
finite lattice QMC data to the thermodynamic limit one
has to know the asymptotic behavior of f(L) for large
L. Right at the critical temperature the structure factor
S(Q) should scale with the system size as L2−η where
η ≈ 0.03 for the 3D Heisenberg universality class [21] and
therefore f(L) ∝ L−1.03. In the ordered phase at low tem-
peratures, spin wave theory predicts f(L) ∝ L−2 assum-
ing a linear magnon dispersion. On the other hand, in the
paramagnetic phase above TN spin correlations decay ex-
ponentially and we expect f(L) ∝ L−3 provided the cor-
relation length is smaller than the system size. In order to
take into account all these possibilities we have extrapo-
lated our QMC data using f(L) ∝ L−λ where λ itself is
a fit parameter. Since the asymptotic behavior of f(L) is
only reached for sufficiently large lattices we have checked
that the omission of the data for small lattices (L = 4 and
L = 6) does not lead to different conclusions concerning
the existence or absence of antiferromagnetic long range
order.

The results of such a finite-size extrapolation are dis-
played in Figure 3 for U = 6 and T = 0.3, 0.36 and 0.4.
While the curves for the two higher temperatures extrap-
olate to a value close to zero indicating the absence of
long-range order, the curve for T = 0.3 yields a finite
value corresponding to a finite sublattice magnetization.
This behavior is in agreement with the value TN ≈ 0.31
that we have extracted from the specific heat data. Pre-
liminary results concerning the magnetic structure factor
for other values of U have been published elsewhere [22].
A more comprehensive presentation including computa-
tional details can be found in [23].

We summarize our results concerning the magnetic
phase transition in Figure 4 where the Néel temperature
of the 3D Hubbard model obtained from different methods
is displayed as function of U . For comparison the asymp-
totic behavior in the weak and strong coupling limit is also
shown. In Hartree Fock theory, applicable for small U , TN

is determined by the gap equation

2
U

=
∫

dε
ρ(ε)
ε

tanh
ε

2TN
(4)

where ρ(ε) is the density of states. As pointed out by
van Dongen [8] the true asymptotic Néel temperature
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Fig. 4. Magnetic phase diagram of the half-filled Hubbard
model. Néel temperature TN as function of U from var-
ious approaches: QMC, this work (filled circles; dots are
meant as a guide to the eye only), QMC [4] (open trian-
gles), QMC [5] (filled triangles), DMFT [10] (open circles),
DMFT [12] (open squares), modified Hartree-Fock theory [8]
(solid curve), Heisenberg limit from high temperature expan-
sions, TN = 3.83t2/U [15] (dashed curve), Weiss molecular field
theory, Tmf

N = 6t2/U (dotted curve).

in the weak coupling limit is reduced by a factor q ≈ 0.282
compared to the solution of (4). We have included this re-
duction factor in the curve shown in the figure. In the
strong coupling limit the Hubbard model can be mapped
to the spin 1/2 Heisenberg model where the critical tem-
perature is known from high temperature series [15] and
QMC simulations [21] which yield TN = 3.83t2/U , com-
pared to the Weiss molecular field result Tmf

N = 6t2/U .
Our QMC results interpolate smoothly between weak and
strong coupling asymptotics whereas the old QMC data
of references [4,5] are clearly off in both limits.

Comparing our results with DMFT data is not
straightforward since in DMFT calculations mostly a
Gaussian or a semi-elliptic density of states is used which
both differ from the non-interacting density of states of the
3D Hubbard model. To convert energies we have expressed
the hopping matrix element t (which is our energy unit)
in terms of the second moment of the density of states
via t =

√
〈ε2〉/6. In practice this means that the energy

data from reference [10] have been multiplied by a fac-
tor 2

√
3 and those from reference [12] by a factor of 2

√
6.

In the weak coupling regime U . 6 there is good agree-
ment between the DMFT results and our QMC data while
for intermediate and large values of U the DMFT yields
substantially higher values of TN. This is not surprising
since in the limit U →∞ the DMFT reduces to the Weiss
molecular field theory of the Heisenberg model. There are
however significant discrepancies between the DMFT data
from references [10,12] for large U . This might be due to
the fact that in the first case a Gaussian and in the latter
a semi-elliptic density of states was used. It should also be
noted that the DMFT data from [12] approach the molec-
ular field limit from above while the curve of [10] and also
our QMC data lie always below their respective strong
coupling asymptote.
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Fig. 5. Particle density n as function of the chemical potential
µ for U = 3, 4, 5, 6, 7, 8, 9, 10, 12 (from top to bottom), T = 0.45
and L = 4. The curves are polynomial fits.

3 Metal insulator transition

At a true metal insulator transition the DC conduc-
tivity σ drops to zero when some control parameter is
changed across a critical value. This is strictly speaking
only possible at zero temperature whereas for T > 0 the
conductivity remains always finite due to thermal activa-
tion. Unfortunately, the DC conductivity – although quite
easily accessible in experiment – is very hard to obtain
from QMC simulations, since the required analytic con-
tinuation of the current-current correlation function from
Matsubara to real frequencies is numerically a very hard
problem when the input data are noisy. We have therefore
based our considerations on calculations of the electronic
compressibility κ = ∂n/∂µ which can be obtained with
high accuracy from QMC simulations. Although there is
no simple relation between σ and κ both are expected to
be finite in the metallic and exponentially small in the
insulating regime.

DMFT calculations employing the iterated perturba-
tion theory [18] have revealed the following scenario for the
Mott Hubbard transition. In the fully frustrated Hubbard
model there exists a first-order metal-insulator transition
line due to a coexistence regime of metallic and insulating
solutions at low temperatures. This first order line ends
at a critical point, reminiscent of an ordinary liquid gas
transition [24]. Recent numerical work has corroborated
this scenario. In fact, the first order transition can also be
observed as a jump in the average number of doubly occu-
pied sites [24] and it is expected that the compressibility
is discontinuous as well.

Figure 5 shows how the particle density n depends
on the chemical potential µ for T = 0.45 which is
slightly above the antiferromagnetic phase boundary. Due
to particle-hole symmetry n − 1 is an odd function of
µ − U/2. We have therefore used the polynomial f(x) =
ax + bx3 + cx5 to fit the QMC data. The coefficient a
yields the compressibility κ which is displayed as func-
tion of U in Figure 6. There is no sign of a disconti-
nuity as should be observed in the case of a first order
transition. Instead the compressibility decreases smoothly
up to U ≈ 8 and can be very accurately approximated
by a second order polynomial in this range, as indicated
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Fig. 6. Electronic compressibility κ as function of U . The curve
is a polynomial fit for the range 3 < U < 8.

by the dashed curve in the figure. Afterwards it turns over
into an exponential-like tail that we associate with the
crossover regime where only thermal activation across the
gap contributes to the compressibility. Unfortunately our
data are not precise enough to extract the U dependence
of the gap. The observation of a crossover regime instead
of a true metal-insulator transition is in agreement with
the location of the critical point calculated within DMFT.
For a semi-elliptic density of states the critical values are
Uc ' 11.7 and Tc ' 0.127 [24], converted to our units
which is by a factor of more than two below the maxi-
mum Néel temperature i.e. deep inside the antiferromag-
netic phase.

4 Conclusions

We have performed QMC simulations of the half-filled 3D
Hubbard model on simple cubic lattices of up to 103 sites.
Using finite-size scaling of the magnetic structure factor
it is shown that the low-temperature maximum of the
specific heat coincides with the antiferromagnetic phase
transition. The Néel temperature thus obtained interpo-
lates smoothly between the analytic solutions for weak
and strong coupling but differs significantly from the re-
sults of previous QMC simulations. The shape of the spe-
cific heat curves close to the phase transition is similar to
the one obtained for the 3D spin 1/2 Heisenberg model
using high precision QMC simulations [21] indicating that
both models are in the same universality class. There is
no indication of a first-order transition for small values of
U contrary to a conjecture established in previous QMC
simulations [4,5].

In order to investigate the transition from metallic
to insulating behavior in the paramagnetic phase above
TN we have calculated the electronic compressibility. The
transition appears to be broadened in accordance with
the crossover scenario developed in the framework of the
DMFT. For T = 0.45 the crossover regime extends over
the range 9 . U . 11 which is somewhat below what is
obtained in DMFT calculations [25].

It would be very interesting to perform QMC simu-
lations for a Hubbard model where antiferromagnetism

is suppressed by adding a next-nearest neighbor hopping
t′ in order to confirm the existence of the first order
transition line obtained within the DMFT. It is however
to be feared that in this case the notorious minus sign
problem will prohibit efficient QMC simulations at low
enough temperatures. We estimate that the average sign
of the fermion determinant behaves as ∝ exp(−βt′) which
means that for temperatures of the order of t′ the minus
sign problem becomes severe and therefore the develop-
ment of improved QMC algorithms is needed to study
this problem.
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This work was supported by the DFG as a part of the project
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transition-metal chalcogenids (HO 955/2).
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